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ABSTRACT 

The theory of finite Fourier transforms is developed 

from the definitions of infinite transforms and applied to 

the computation of convolutions, correlations, and power 

spectra. Detailed procedures for these computations are 

given. Including listings and writeups of FORTRAN subroutines, 



1.     INTRODUCTION 

For the past several months, E. A. Flinn, J. p, claerbout, 

and I have been examining some practical and computational 

aspects of the theory of Fourier transforms. These efforts have 

resulted in a set of programs for performing operations on time 

series based on the Cooley-Tukey (References 1,2) hyper-rapid 

Fourier transform method.  Using this method, computations on 

seismic array data such as the calculation of convolutions, 

correlations, spectra, and digital filters have been speeded up 

by factors of three or four and sometimes even ten.  The purpose 

of this report is to communicate these rrjults in a straight- 

forward manner and to offer some motivation for their derivation 

as well as for future efforts in this rrea. Writeups and 

listings of the programs discussed here are included as appendi- 

ces to this report. 

2-     THE FINITE AND DISCRETE FOURIER TRANSFORMS 

In the case of continuous data of infinite length, the 

Fourier transform pair is usually written as: 

A(tü) = (2TT) 
2  J f(t)e"i dt 

1 

2   f   , / » lU»t 

(1) 

f(t) = (2TT) 
2 J  A(ui)e

i 
dou 

The first of these, going from time to frequency, is referred 
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to as the chrect transform and the other as the inverse trans- 

form.  Sometimes the direct transform is written with a factor 

of 1 in front of the integral and the inverse with a factor of 

1/2TT . These are, of course, equivalent to the above definition 

Quantities of interest, such as spectra, etc., involve magni- 

tudes or squares of one transform and the factor must be 

inserted or taken out, depending on which definition is used, 

to preserve the proper dimensions. 

Two drawbacks of these definitions for digital compu- 

tations are apparent:  First, the integrals must be approxi- 

mated by sums in the digital compute., which implies that both 

transforms involve sampled variables.  Second, the infinite 

limits on the sums are impossible in practice. Clearly, these 

sums must be truncated, as they do not in general converge over 

a finite interval. As a result Fourier transforms as such are 

never really computed by a digital computer.  Instead, the 

complex samples of a direct transform are approximated by the 

cosine and sine coefficients of Fourier series representation 

of the input data.  The definitions for these are: 

•if    x(t) - 2, [an cos (rrnt/T) + bn sin (nnt/T)] , 

n=0 
(2) 

T 
then   ao = T J  X(t) dt b  = 0 

o 

an " T J x(t) cos  -mt/T) dt 
o 

(3) 
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2 r1 

bn " T J x(t) sin innt/T)  dt 

If N samples of the data are taken at equally spaced 

intervals At = T/N. the integrals (3) becomes sums and the 

frequency sum in (2) goes from DC to the folding frequency, 

i.e., k = 0 to N/2T .  The equations are then written as: 

N/2 

X{j) "I [ak C08 <
2TT

:*/N) + bk sin (2nik/N)J 
k=0 

N-l 
(4) 

ao -KIX(
^ 

j-0 

b = o 
o 

N-l 

% ^ N Z X(:', COS (2TT 

j=0 

N-l 

Sk/N,     bk=Nl X(j, Sin <2TTik/N),  (5/ 
j-0 

where t has been replaced by jAt  . By now defining: 

A(k) = r (a - i b ) ,  A(0) - (6) 

and realizing th it a real time series contains only real points, we 

can write (4) as: 

N/2 

x(j)   « £    A(k)   exp   (2TTijk/N) 
k»0 

(7) 

A groat, deal of symmetry between the two transforms can be 
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preserved if the sum in (7) is summed up to N-l .  Redundant 

points in the spectrum are included (since the transforms are 

periodic) but the computational procedures are simplified. 

It is also convenient to split the factor of 1/N appearing in 

(5) into two factors of 1//N , one in front of each transform. 

By defining a complex numberr 

w = exp (2Tri/N)  , (8) 

the two transforms can now be written as 

N-l 

A(k) = 7= X f(j) w'jk (9) 

j-0 

N-l 

f(j) "Tf £ A(k) WJk (10) 
k=0 

It can be shown that the set of direct Fourier trans- 

form points, between DC and the folding, frequency, contains 

the same amount of information as the real data series:  The 

transform includes N/2 distinct points, which with the DC term 

makes a total of N/2 + 1 complex points.  Equation (9) shows 

that both the DC and the folding frequency point are purely 

real; thus, the Fourier transform contains {N/2-l)*2+2*l num- 

bers. This is exactly the same amount of information con- 

tained in the real time series.  It also suggests that the 

existence of one transform should imply the existence of the 

other. 

If there are N/2+1 non-redundant points in the direct 

transform, then the sampling interval in frequency must be 
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(N/2T)/(M/2) = 1/T  .  Thus, the product of the time and frequency 

variables is: 

i*t  = i(2nk.i) (j-J) =^i jk (11) 

This  equation  relates  the arguments  in  the  two exponentials, 

one   in  the continuous transform and  the other  in  the  finite 

transform   (Equations   1,   9,   and  10). 

3. TWO- AND THREE-DIMENSIONAL FOURIER TRANSFORMS 

Two- and  three-dimensional direct  Fourier transforms 

are  seen to be 

»rl  N2-l 

^i'V =7f^ I  I x(vv wrjiki v^2     <i2> 
VO J2=o 

and 

N -1     N^-l     N  -1 
12 3 

'(Vk2'V =7!Hhr I     I     I ^^i'^'^1 wrj -"iiki 

12 3 ^=0 ^=0 33=0 

.w2"j2k2  w3   j3k3     (13) 

We can break up Equation (12) as follows; 

V1 

1 

"2 
I 
V0 

J2) w2"
j2k2 (14) 
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This calculation requires N one-dimensional transforms; we 

have defined 

"'W =7ir  I x{h'h) "i^1"1 <15i 
1 ji=0 

which requires N one-dimensional transforms.  Thus, N1 + N 

one-dimensional transforms are required to compute the single 

two-dimensional transform. 

We can break up Equation (13) as follows: 

N3-l 

^i'W =7f:  I   c(krk2,j3) w^a (16) 
3
i3'0 

which requires N N one-dimensional transforms; we have de- 

fined 

V1   v1 
C<k

l•k2•j3, "TSV ^     I x(Jl,J2,J3) w^l
11! „/^  <17) 

-"l     J2 

which requires N two-dimensional transforms.  Thus, N..N one- 

dimensional transforms and N. two-dimensiona.1 transforms are 
j 

needed to compute the single three-dimensional transform. 
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4.     ALGEBRAIC DISCUSSION 

Equations (9) and (10) suggest a more elegant and compact 

way to write the two transfor s.  We define the vector A as 

the transform with elements (A)  ■ A(k), and define the vector 

F as the time series with elements (F). = F(j) .  The process 
- j 

of transforming is seen to be equivalent to matrix multipli- 
ik 

cation by a matrix W whose elements are (W)   ■ wJ 

A - W+f (18) 

and  f = WA , (19) 

where the dagger indicates Hermitian conjugation.  Substituting 

(19) into (18) gives the following important identity: 

WW+ = W W » I  . (20) 

This is the definition of unitarity for the transformation W 

It is a generalization of orthogonality for complex matrices 

and assures Parseval's theorem: 

A+A = f+f  . (21) 

W preserves "length" between the two domiins. The identity is 

actually proved by writing out the terms in the product: 
\       ■■ 

N-l 
i   r   r -ijm   r nmk 

±    2,    Lexp(2ni/N)J [exp(-2TTi/N) J 
m=0 

=     ^ k 
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or 

N-l 
1 y N /_. 

w m(j-k)   j 
= 5: (22) 

m=0 

This last important relation is seen to be true by the use of 

a phase diagram;: 

W 20 

W 15 

W 10 

W 25 

W0 for j - k = 5 and N = 6 

w- 

The Cooley-Tükey method factors the W matrix, if its 

order is a power of two, into L + 1 sparse matrices, whert; L 

is the power of two: 

W = SL SL-1 siso 

Multiplying L + 1 times by these sparse matrices can in some 

cases reduce the computing time by many tens of times. This 

factorization is proved by Good (J) and organized for compu- 

tation by Rader (4), 

For the case N = 8 the W matrix is: 

- 8 - 
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w - .^B 

1 

1111111 

12 3 4 5          6 7 
w w w w w w w 

2 4 6 8 10       12       14 
w w w w w W W 

3 6 9 12 15       18 21 W W W W W w w 

4 8 12 16 20       24 28 
w w w w w w w 

5 10 15 20 25        30 35 
w w w w w w w 

6 12 18 24 30       36 42 
w w w w w w w 

7 14 21 28 35       42 49] 
w w w w w w w 

(22.1) 

The L +   1  = 4  transformations are graphically illustrated 

by t'ie   following diagram  in  Rader's notation   (Reference 4): 

INDEX     BINARY     ARRAY 0 
RE- 
VERSED     INDEX 

0 

1 

2 

3 

4 

5 

6 

7 

000 

001 

010 

011 

100 

101 

110 

111 

_*.(p) ».A(O) 

A(l) 

Z:M6>. /\A(3) 
y y 

ooo 

100 

010 

no 

001 

101 

011 

111 

0 

1 

2 

3 

4 

5 

6 

7 

Ee :h solid line represents a multiplication by w to the 
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power indicated in the circle, and each dotted line represents 

a simple addition into that element of the array.  No ad- 

ditional storage is used by this process.  The results of each 

transformation are stored on top of the original data, and 

the last transformation, which is a simple interchange, gives 

the desired Fourier transform,  ^ote also that the succession 

of numbers in the circles is the bit-reversed representation 

of the sequence of indices in order.  They can be stored in a 

table or generated successively by a reverse-add procedure. 

For reasons of space and simplicity, we have chosen the latter 

route. 

The S matrices are: 

S0 = /^~ 

I 0 

1 

0 

0 

0 

1 

0 

0 

0 

0 

1 

0 

0 

0 

1 

0 

0 

0 

0 

1 

0 

0 

0 

1 

w 

0 

0 

0 

A 
w 

0 

0 

0 

w 

0 

0 

0 

w 

0 

0 

0 

0 

( 
w 

0 

0 

w 

0 0 

0 0 

4 
w 0 

w 
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/T~ 

\ 

i 

o 

i 

0 

0 

0 

0 

0 

1 

1 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

.0 

0 

1 

0 

1 

0 

0 

0 

0 

wC 

4 
w 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 

w 

0 

w 

0 

0 

0 

0 

0 

0 

0 

1 

1 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

w 

0 

i 
w 

0 

0 

0 

0 

0 

0 

w2 

w6 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

b 

1 

0 

1 

0 

0 

0 

0 

0 

1 

1 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 
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0 

0 

0 

0 

1 

0 

1 

0 

0 

0 

0 

w5 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

wf 

0 

0 

0 

0 

0 

0 

0 

1 

1 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

c 

0 



5. HIGH-SPEED CORRELATIONS ANDjCONVOLUTIONS 

By computing Fourier transforms with this finite Fourier 

series-like method an important condition is put on the time 

series.  As in regular Fourier series the input is assumed to 

be periodic with period T and the integrals or sums are com- 

puted over a single period.  There is also the effect of 

cutting off the spectrum at the folding frequency.  Sines and 

cosines of finite wavelength will repeat again outside the 

region of interest. This fact in itself is not bothersome but 

becomes a serious complication in the computation of convo- 

lutions and correlations. Convolutions and correlations as 

usually computed assume the time series to be zero outside the 

region of interest. Therefore, the integrals or sums in com- 

puting them are summed out only over the non-zero terms. When 

multiplying together two finite Fourier transforms (or the 

complex conjugate of one times the other) the periodicity of 

the time series means that elements which have been shifted 

past the end of a period reappear at the beginning.  This 

process is called circular convolution or correlation and its 

effects are unavoidable when straightforwardly computing lagged 

products with finite Fourier transforms.  This is illustrated 

belows 

X1 = (3, 0, -1. 2) 

12 

X2 = ( -2, 2, -1. 3 ) 

- (1, -1, 3. 5)   for 100% positive lags; 

= (1, 5, 3, -1)   for 100% negative lags. 

12 - 
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■■■   

Circular convolution is therefore writtens 

T~l 

RC.(t) 
ID 

)  x (T) x.(t ■; T) 
(23) 

T=0 

where x (t + T) = x (t) for all m m m 

The proof that this kind of correlation is equal to the 

transform of the absolute product of the two finite trans- 

forms follows below: 

T-l T-l T-l 

I RCij{t) w'tk= I I VT) vt+ T) w'tk 

t=0 i-=o T=n 
(24) 

T-l  T-l+T 

'I     I      x.Cr)  x.Cq)  w-^-T>k 

T=0 q=T 
q =  t  +  T 

T-l T-l 

I    Xi(T)   ^    I    xj
(<3)   w -qk 

T = 0 q=0 

= A^   (k)   A.(k) 

On the other hand the transient correlation for posi- 

tive lags is defined by the following; 

T-l-t 

^t)'l        Xi<T)Xj(t+T) (25) 
T^O 
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where the upper limit on the sum simulates the desired zeros 

in the time series outside the region of interest.  This is 

illustrated below: 

X1 = (3, 0. -1, 2) 

X2 - (-2, 2.   -1, 3) 

R12 = ^1' 3' ~3' 9)   for 100^ P08itive lags'' 

= (1, -4, 6, -4)  for 100% negative lags. 

T 
The finite Fourier transform of this R   is thus not the 

product of the two individual transforms.  However, by filling 

zeros into the aecond half of each data series nd computing 

their transforms out to twice their actual length, a good esti- 

mate of the spectrum may be obtained.  In addition, the 

negative lags in the correlation appear, thus giving a more 

mathematically satisfying result.  This is illustrated below: 

X  = (3, 0, -1, 2, 0, 0, 0. 0) 

X2 - (-2, 2. -1, 3, 0, 0, 0, 0) 

R12 = (1' i'   "3' 9' 0' '4' 6' "4)   f0r 100?6 Positive lags* 

The two modified transforms thus are: 

2T-1 

F.(k) = Y  x.(t) w"tk     x.(t) = 0, T < t < 2T-1 
1        £J     1 1 

t = 0 

2T-1 2T-1 

S..(k) = F.(k)* F.(k) = V  x.(t)wtk Y  x (T) w' 
ij 1 j /L.     1 O     ] 

t=0 ^=0 
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2T-1 

^(s) " I       F.Ck)* F (k) ks 

k=0 

2T-1 2T-1 2T-1 

I        I      \(t)   X.CT) I      W
k(t+S-T) 

k=0 t=0  T=0 

(26) 

Now fro. (22) the last su. beco.es a Kronecker delta function 

and the other sum is collapsed to give: 

2T-1 

t=0 

The last equality following fron, the original assumption that 

x.U) = 0. T < t < 2T-1  . Transient correlations for 100% 

lags are therefore computed by forming the absolute product of 

two transforms, each computed out to twice the length of the 

original data series with zeros filled into the second halves. 

Non-circular or transient convolutions are computed in 

much the same way, except that the transforms have to be com- 

puted out to a length equal to the sum of the lengths of the 

time series and the filter, with the appropriate number of 

eeros filled into each.  The convolutxon theorem is proved in 
the same fashion. 

T+S-l 

.no = I ad)   w Tk 
a(T)   =  o   , 

•^ = 0 
S<;T<T+S-1 
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T+S-l 

JW   = Y x(t)   w'^ X(t)   =0 T   <  t   < <t<T+S-l 
t=0 

T+S-1 T+S-l  T+S-l T+s-1 

I        A(k) X(k)   wku =    ^        I a(T)  x(t)  I        wMu-T-t) 

T=0  t=0 k=o k=0 

T+S-l T+S-l 

£   A(k) x(k) wku - Y    a(t) x(u-t) = y(u) (27) 
k=0 T = 0 

Where y{u) is now the "filtered" output of the filter a acting 

on X. Convolutions are therefore computed by forming the 

product of the twc transforms, each computed out to a length 

equal to their sum with zeros filled into the extr. lengths. 

Detailed procedures for these coranutations are listed in 

Appendix A. 
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APPENDIX A - PROCEDURES 

FINITE FOURIER TRANSFORM THEORY AND ITS APPLICATION TO THE 

COMPUTATION OF CONVOLUTIONS, CORRELATIONS, AND SPECTRA 



PROCEDURE FOR CAI.CUI.ATIN« AN AtrTO-SPRCTRlIM AND Al" AUTO- 
CC«RELATION 

DIMENSION X(2*LX42), CX(I,X+1) 

EQUIVALENCE (X.CX) 

TYPE COMPLEX CX, CONJG 

LX - 2»*N 

1) Erase 2*LX+2 points In X» the extra complex point Is needed 

by COOLER to return the point at the folding frequency. 

2!  Read the data channel into X(1J through X(LX). 

3) CALL COOLER(M+),CX). The Fourlei transforu of X and the 

necessary zeros on the end of the data Is now stored in 

CX, LX+1 complex points long, representing frequencies 

between DC and the folding frequency. 

4) Go through the LX+l complex points in CX, andi 

CX(1) - rC0NJ0(CX(I))*CX(l)]/LX 

that Is. 

* Re[CX(I)1  -   (RefCXd)!2 +   ImfCX(l) ]2)/LX 

ImCcXd)]  -  0.0 

The auto-spectrum Is the real part of CX, purely real 

and LX+l points in length. 

5) To get the auto-correlation, fill in the other LX-l 

complex points in CX as required by COOL for inverse 

transforms, and call COOLi 

DO 1 I » I,LX-l 

1 CX(LX+1+1) - CX(LX-I+1) 

CALL  OOI.(N+l,CX.+ 1.0) 

The auto-correlation As in the real part of CX, purely real 

and 2*LX points in length. 

NOTE:  CX must be dimensioned 2*I.X if the auto-correldtion 

is to be computed. 
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PROCEDURE FOB CAtCULATINfi A CROSS SPECTRUM AND A CROSS-CORRELATIOW 

DIHENSIOH X(2*LX+2). CX(LX+1), Y(2*LX42)r CY(LX+l) 

EOUIVALEHCE (X,CX).  (Y.CY) 

TYPE COMPLEX CX.CY 

LX - 2**!l 

I)  Erase 2*UC+2 points ;.n both X and Y. 

2J  Read channel 1 into X and channel 2 into Y. 

3) CALL COOLER(N+l,X) 

CALL COOLER(N+l,Y) 

4) Go through the LX+l complex points and overlay CX (or CY) 

wlthi 

CX(1) - [C0NJG(CX(I))*CY(I)]/LX 

that is, 

Re[CX(I)] - (Rercx(I)l*Re(CY(I)]+ImrcX(l)1*Ini[CY(I)])/LX 

ImfCXd)] - (Re[CX(in*Im[eY(in-Imrcx(in*Re[CY(I)])/LX 

The cross-spectrum between channel 1 and channel 2 (Which 

is the complex conjugate.of the cross-spectrum between 

channel 2 and channel 1) is now in CX, LX+1 points in 

length. The co-spectrum is in the real part of CX and the 

quad-spectrum is in the imaginary part of CX. 

5) To get the cross-correlation, fill in the other LX-1 points 

in CX and call COOL: 

DO 1 I - 1,LX-1 

1  CX(LX+I+1) ■ C0NJG(CX(LX-I+1)) 

CALL COOL(N+1,CX,+1.0) 

The cross-correlation is in the real part of CX. purely 

real and 2*LX points in length. 

MOTE; CX must be dimensioned 2*LX if the cross-correlation 

is to be calculated. 
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PROCEDURE  FOR CALCIILATIWG THE CX*NQuni<M  OF TWO  SEflTlifi 

D^MBMSIOB   X(I,+ 2),  CX(»jL+l),   F(L+2),  CfV&W 

EQUIVALESCE   (X,CX),    (F,CF> 

TYPB COMPLEX CX.CF.CONJG 

L  «  2**H 

L here  1. the next  power of  2  larger than Ut+Lr,,the combined 

length of the data  and  the  filter. 

1) Erase L+2 points  In X and P. 

2) Read the data   into X(l)  through X(LX)  and the  filter  impulse 

response  into F(l)   through F(LP). 

3) CALL COOLER(N,CX) 

CALL COOLER(K,CF) 

4) Go  through  the  ^+1   complex points   in CX,   andt 

CX(I)   -  rcX(l)*CF(I) l/LX 

that   is, 

RclCXdM - CRercx(I)|*RefCF(I)l-im|cX(m*lmrCF(I)])/LX 

ImfCXdH - ("•rcx(I)|*ImrcF(r)l+RercF(l)1*ImrcX(I)|)/LX 

The Fourier transform of X convolved with F is now in CX. 

5) Fill in the re^t of the point» in CX as needed by COOL, 

■nd transform back.  Note again that if the actual convo- 

lution is desired instead of the Fourier transform, CX 

must be dimensioned L. 

DO 1 I - }, ',1.-1 

1  CX^LMH) - CONJGrcX(>JI, -I* J ) 1 

CALL COOL(M,CX,-1.0) 

The ronvol.tion of X with F is now in the real part of CX, 

purely real, and I.X»I,F-1 points in length. 

A-3 

J 



APPENDIX   B -   PROGRAM LISTINGS 

FINITE  FOURIER TRANSFORM THEORY AND   ITS  APPLICATION TO THE 

COMPUTATION OF  CONVOLUTIONS,   CORRELATIONS,   AND  SPECTRA 



9UHH0UT|Nfc   CUOHN,KtslGNl) 
C 
c 
C       HVPEH-RAPIO K-'URIFR TMANS^MH USING COOLEY-TUKtY ALGORITHM 
C 
C 
C       SklSMIC DATA LABORATOHV, ALbXANORIA* VA«  PROGRAMMgD 
C       26 F6HRUARY 1V66 BY J. t. CLAfcRBOUT CRlT)« 0, M. M6C0WAN« 
C       E. A« FLINN* AND Jl GIBBON (TfeLEOYNE) 
C 
C       X IS A CONPLEX ARRAY USED FOR THE DATA SERIES AND >THE 
C 
C N 
C       TRANSFORM * THE NUMBER OF ELEMENTS OF X IS L ■ 2 , 
C       SIGN ■ -1.0 FUR DIRECT (OUR1ER TRANSFORM AND *1,0   FOR INVERSE 
C       FOURIER TRANSFORM  «BUT SEE BELOM FOR ARRANGEMENT BF DATA FOR 
C        INVERSE TRANSFORM), 
C 
C       FOR DIRECT TRANSFORM, ON INPUT THE REAL PART OF X CONTAINS THE 
C       DATA SERIES AND THE IMAGINARY PART OF X IS ZERO.  BN RETURN« 
C       THE FUURIER CÜ8INE SERIES EXPANSION OF THE DATA IS IN THE REAL 
C       PART UF X* AND THE FOURIER SINE SERIES EXPANSION IS IN THE 
C 
C N-l 
0        IMAGINARY PART OF X.  EACH CONTAINS ONLY I *  1   NONREDUNDANT 
C       POINTS,  THE COSINE EXPANSION IS SYMMETRIC ABOUT POINT NUMBER 
C 
C        N-l 
C       2   ♦ 1 AND THE SINE TRANSFORM IS ANTISYMMETRIC ABOUT 
C       THIS POINT, 
C 
C       FOR EXAMPLE • N • 3 AND DATA • I 0.,1. »0;,0.,01*0..§.#Of ), 
C       THEN REAL PAHT OF X « U, # 1. , 0 . , 0 .# 0 ,, Oi, 0, ,0 t) AND IMAGINARY 
C       PART OF X ■ (Ot#0.,0*'0*tOM0«*O«'0*} ON INPUT. 
C       ON RETURN« REAL PART OF X • (1,001». •7071,0«,•.7071.-1,000* 
C        -.70/l,0..*./0;il AND IMAGINARY PART OF X > (0.,«,?071, 
C       -1.000,-,7071,0.#.7071.1.000,.7071).  POINT NUMBER 1 
C       CORRESPONDS TU ZERO FREQUENCY« POINT NUMBER 5  CORRESPONDS 
C       TO PI« THE FOLDING FREQUENCY, 
C 
C       TO DO AN INVEHIE TRANSFORM, THE COSINE AND S|NE SERIES MUST BE 
C 
C N«l 
C       FOLDED OVER ABOUT POINT NUMBER  2    «1 BEFORE CALLING 
C       COOL WITH SIÜN • «1.0,  SUBROUTINE FTPACK CAN BE USED TO DO 
C       THIS FOR YOU« CONVERTING AMPLITUDE AND PHASE BACK TO 
C       SINE AND COSlNg |r NEED BE. 
C 
C -N 
C       THERE IS A SCALE FACTOR OF  2   WHICH COOL DOES NOT APPLY, 
C 
c 
C THE USER CAN APPLY THE SCALE FACTOR EITHER TO THE DIRECT OR TO 
C 
C -N/2 
C THE INVERSE THANSFORM, OR APPLY A  SCALE FACTOR OF 2     TO 



c 
c 
c 
c 
c 
c 
c 
c 

c 
c 
c 

c 
c 
c 

c 
c 
c 

c 
c 
c 

c 
c 
c 
c 
c 
c 

c 
c 
c 

FOR  6MMPL6,   tilVEN  THE   INPUT  UATA  AS  ABOVE«   THE   TWO  STATEMENTS 
CALL COOL(3*X««l(o) 
CALL COOL(9«X«*lvo) 
MOULD CKANQE HfiAb PART OF X TO C0,,8. ,0.,0 , ,0 .»0 . #8.,0,> AND 
IMAGINARY PANT Qf X TO (Ot«Q,#Ot*0t«0,«0,,0.,0*), 

DIMENSION X(1)*1NT(16)«Q(2) 
TYPE COMPLEX X»U.M#MOLD 
EQUIVALENCE (Q*W) 

INITIALIZE 

LX   •  2**N 
FlilvSftSnSMQS 
FLX  • LX 
FLXPl2>SlQNl*PI2/rLX 
DO 10 I«1»N 

10 INT(I> • 2*«(N»1I 

LOOP OVER N LAYERS 

DO 40 LAYER ■ 1»N 
NBLOCK • 2**(LAYbR.l) 
LBLOCK-LX/NBLOCK 
LBHALF • LBLOOK/2 

START SERIES AND LOOP OVER BLOCKS IN EACH LAYER 

NM • 0 
DO 40 IBLOCK"1*NBLOGK 
L8TAK? • LBLOOK*f|BLOCK*l> 

COMPUTE W ■ CbXP(2,*PI*NH*SlQNI/LX) 

ARG«FL0ATF<NM)*FUXP|8 .^ 
0(1)  ■ COSFURQ) 
012)  • SINFURO» 

THIS CAN BS 8PIE0ED UP BY USING A TABLE OF COSINES 

COHPUIE ELEMENTS FOR BOTH HALFS OF EACH BLOCK 

DO 20 I-lfLBHALF 
J ■ ULSTART 
K • J*LBHALF 
Q • X(K)*W 
X(K} ■ XIJ)»Q 
X(J) ■ X(J)*0 

20 CONTINUE 

BUMP UP SERIE» BY TWO (NOT ONE) 

DO 12 I«2*N 



c 
c 
c 
c 
c 

c 
c 
c 

c 
c 
c 
c 

c 
c 
c 

II » I 
LLMINT(1).ANU(NH 

THIS LOGICAL UPERATION IS A MASK TO DETECT A ONE IH 
TKfc AHPROPRMIg BIT POSITION OF NW.  THIS STATEMENT WILL NOT 
WORK UN IBM FORTRAN SYSIENS, 

iF(LL)31.3lt30 
30 UONTIMUE 

NW * NW«INT(I) 
32 CONTINUE 
31 CONTINUE 

Nb • NWMNTUP 
40 CONTINUfc 

START SERIES TO »FGIN FINAL REPLACEMENT 

NW • 0 
00 5ü K»1«LX 

CHOOSE CORRECT INDEX AND SWITCH ELEMENTS IF NOT ALREADY 
SWITCHED 

NW1«NW<»1 
IF(NW1.KI59#»9#6U 

60 HOLD«X(NWlt 
X|NW1)*X(K) 
X(K) • HOLD 

55  CONTINUE 

BUMP UP SERIES BY ONE 

00  70   I«1#N y   — 
II   ■   I 
LLBINT(I).ANDtNW 
IF(LL)B0*60«70 

70  NW  ■  NW-INTCU ^^ 
80   NW   ■   NW*INT(IJ» \ 
50  CONTINUE 

RETURN 
END 



c 
c 
c 
c 
c 
c 
z 
a 
c 
c 
c 
c 
c 
c 

9UHRÜUTINE CÜ0H;ON<lNT,IOr,U^»«l 
OIM£NSIO"» F(1)*X(2,1)>|.AU(12/) 

OIMENSIUN F(N#L».K(2,ITfc8T»,LA«(127) 

M'JLTICH/INNIiL   CONVOLUTION  HQUTlNte   ^OH IMHRT OÄlÄ \ 

v.. IN? IS THfc INPUT SUBSfcT TAPfc ÖF DATA CHANNELS 
IOT lü THE OUIRUT SUBSET TAPE OF DATA CHANNELS 
L 18 THE NUMbbR Of FILTER PüfNTS FQH EACH CHANNEL 
F IS THE FILFfcR MATRIX 
X IS A UORKINU ARRAY CONTAINING AT LEAST 2*ITEST POINTS 
I TEST IS THE NgxT POWER OF 1 MO LARGER THAN LX*L 

D.M.NUCOWAN JULY 196« 

REMIND |NT 
REWIND IDT 
READdNTILAB 
N«LAB(2) 
LX>LAB(J) 
ISUM«LX*L 
LAB<J»«LX-(L-ll 
MRITE(10T)LAB 
DO  1   lN0"lf13 
ITES1*2**IND 
IF(ISUN*1TEST)2«V«1 
NCOOL"INU 
ÖO  TU  3 
CONTINUE 
PRINT  IQUO.LXfL 
F0RMATT59H1BAD  NtMS,   ER4ÜR   |N  COOLCON,   DATA  PLUS FILTER  TOO  LONG  L 

\Xm   «I6*5H«   (,■   >iO| 
STOP 
CONTINUE 
IT02«ITI:ST/2 
IT02P2«IT02*Z 
DO  10   IN»1,N 
CAL1    ERAS>E(2*ITt5>T,X) 
READ« INT MX(l»M)«Mel,LX) 
00  It   IL»1,L 
X(2*IL)*MIN«|IL-1I*N) 
CALL  COÜL(N<;OOL*XC.1(0| 
X|S*l)*KU»t>*l(li««t)/|TiST 
X(2(1)B0.0 
00  20   IL-JMTOZ 

SAVE«(X«l,ITEST-ILt2»*X<2.ITfcST-lL*2)*X«l,ILUX(2#ILJ>/l2*lTC:ST) 
X<2.IL)«<X<i»|TEbT*lL*2l**2-X(2#ITEST-IL»2)**2.XilflL)*«2*X|2,|L)* 

20   X(1,IL)«SAVB 
X<l.IT02*l)BX|l,JT02*lMX|i(PclTü2*l)/IT6ST 
X(2iIT02*l)«0(0 
00 30 IL*IT02P2*1TEST 
X(l.IL)*X(i(ITESI«IL«2) 
Xt2*IL)«-X(2«|ll:SiT-lLt2) 
CALL COOL(NCU0L*X,«1.0> 

1000 

tl 

30 

10 MRITtUülimi#M»,M«L.LX) 
END fiLfc IOT 
HEWIND IUT 
HEWINU INT 
RfcTUNN 
END 



c 
c 
c 
c 
c 
c 

10 

SUHHUUTlNb COOLkHfN.X) 

DIMENSION y(2*L*Z| 

FUURlbR TRANSFORM OF A 
N MUST BE LbSS THAN OR 

DIMENSION y(2,l) 
N ■ N*l 
L « 2**M 
CALL COÜLlM,Xf-1.0» 
f   ■   J.l4159265S/»'LOATFa» 
SAVE"Xa) 
X(1)«X(1)«X(2) 
XC1«L«1)"SAVE»X(2) 
X(2,1)«X(2,L*1»*«,0 
LL-L/2 
00   10   I"2»LL 
4  •  L-I*2 
Al«Ot!)*CXfl,|)*Xll#JH 
A2«0(9*(X(2(I)«XIItJ|) 
8l»0.5*C-X<l.n*X|l»J>» 
92»0.5*C-X(2.|>*X|2,j)» 
11   ■   I-l 
Fl   ■  F*ZI 
6l«C0SF(Ul 
02«»StNF(Fl} 
SAVE*81 
M1«B1CQ1«B2*G2 
B2>B2*Q1«SAVE«Q2 
X(l#n>Al«62 
«<2.n«A2*Bi 
X(1«J|   Al+82 
X<2,JJ«'»*2«H1 
X(2,LL*l>««X(2»LL*l» 
RETURN 
END 

HEAL DATA 
EQUAL TO 

SERIES 
14 



SUBROUTINE   CÜOLHLBRCNtX) 
C 
c 
C THIS COKPUTfcS TKfi H!L«EHT THANSFOHN OF A UAU SERI6S» 
C USING THi HYHkK-RAPIU FOUHUR fRANSFOHM ROUTINfc COOL 
C THIS PROQRAM 1HANKS TO JON ÜLAERBOUT 
C 
C 
C INPUTS - 
C N « LUG (BAbh 2) OF NUMUEM OF DATA POINTS 
C REALU) > DATA SERIES TO BE TRANSFOHHEU 
C IMAQ(X) • 0 
C 
C OUTPUIS • 
C RtALOO • X AMAIN 
C IHAQ(X) • HILPERT TRANSFOHH Of   X 
C 
C       THIS OALIS COUt 
C 

DIMENSION XC1» 
TYPE COHKLEX X 
CALL COÜL(N*X,-1,0» 
M > 2**N 
Ml ■ M/a+2 
00 1 I*M1,M 

1 XU) • {U(»0t) 
X(l) ■ ,>*XUI 
X(M1-1) ■ ,S*X(H1»1» 
CALL COOL(N*X,«ltO) 
RETURN 
END 



SUUR0U7INE CÜOUHgfN#X,SlQNrA*U) 
C 
C 
C THIS USES COOL TO COMPUTE THE FOURIfcR TRANSFORM OF TWO 
C TIME SERIES AT ONCE 
C 
C INPUTS - 
C N    LOG (BASb 2) OF NUHBfeH OF DATA POINTS 
C «A COMPLfcX ARRAY OF DATA,  THE FIRST TIME SERIES IS STORED 
C IN THE R6AL PART OF X« AND THl SECOND IS STORES IN THE 
C IMAUINAHY PART OF X.  IN UTHER MO«l;S. THE TWO SERIES ARE   \ 
C HULnPLEXED |N THE ARRAY X, 
C SIGN   m   -1,0 FOR DIRECT TRANS,". tM.  THIS SUBROUTINE 
C HAS NOT BttN CHECKED- PUT fQH   TWO INVERSE TRANSFORMS 
C AT ÜNCE. 
C 
C • 
C OUTPUTS • 
C A   COMPLEX FOURIER TRANSFORM OF THE FIRST DATA SERIES* 
C I.IM THE ONE STORED IN THE REAL PART OF X 
C B   FQURIIR IRANSFORM OF THE SECOND DATA SERIES« l(E(* THE 
C ONE STORED iN THE IMAblNAHY PART OF X« 
C BOTH TRANSFORMS ARE OF LENGTH 2**«N-U ♦ 1  (SEE COOL WRITEÜPI 
r 

DIMENSION X(l|*A(l)te(l) 
TYPE COMPLEX X«A«B*C0NJG 
CALL C00L(NfX|8IbN) 
Ml» ■    ,5*tXll»*CONJÖl«<lM) 
öd) « <u.,-.5)*«m«-c0Mj(i(xa)M 
MB2**N 

no lu Kii»H 
A«K|«0.»*(XIK)*CÜNJG<X<M*2-K»n 

10 8(K)«(0.Ü#*0,5)*tX(K»-CÜNJ(j;x(h*Z»K,U 
RETURN 
END 

> 
i ■ 



-^_>- ^_^ i_ — 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 
c 
c 

10 

20 
c 
c 
c 

c 
c 
c 

30 

35 

40 
C 
C 
C 

SUHHÜÜTIN6 COOLVU'.V(LX,X.U#M 
DIMENSION Fai*Xi2«l> 

SiNGU-CHANNbL CONVOLUTION USING COOL 

THIS TAKES FOURIßR TRANSFORM UF DATA AND FILTER, MULTIPLIES 
THfcM lOGETHbH* AND VRAWSFURMS BACK, unrtiea 

INPUTS • 

LX    LENUIH OF DATA 
LF     CENUIM OF FUTfcR 
* ►ILTteR COEFFICIENTS UlhkNSIONED  F<LF) IN CALLING PQM 
X      DATA, DIMENSIONED  X(N) IN CALLING PQM, WHERE 

N IS THE SMALLEST NUMBER WHICH IS A POWER OF 2 EXCEEDING 
CLJ-^LX)^ 

THE ^UBRQUTINE RETURNS X CONVOLVED WITH ", OF LENGTH 
LF*LX-1, STORED CLOSE'PACKED IN X, 

23 SEp^EMUEN 1966 UWMCU 

CHECK LENGTH M8STRICTI0N 

NX«LF>LX 
DO 10 W,13 
N»a**i 
IMNX«N) 20,20*10 
CONTINUE 

ERROR RETURN • LENGTH Qf   FILTERED RECJRD WOULD EXCEED LIMIT 

LM-LF 
RErUHN 

NCÜOL «i 

ERASE WORK|NU SPA^E IN X 

CALL ERASEC2*,!-LX,XCLX*1)) 

MULTIPLEX DATA AND FILTER IN X 

DO 30 1"1,LX 
J»UX-I*1 
X(1,J)   > X(J) 
DO 3& I«1,LK 
x(Z,n ■ o.o 
00 4U I«1#LF 
X(2«I) ■ Fill 

THANSKORM AND FIDDLE 

FN«N 
CALL   COUL.(NCOOL*X|-1,0) 
X(l,l)   «   XtiflMXlZfD/FN 



60 
C 
c 
c 

c 
c 
c 

c 
c 

XfiM)   a   0,0 
iM2>N/2 
00   50   IL«2,N2 

1   M.*FN) *  *"   IL*Z,**2-x<l»Il.)**2*X(2,IU**2|/ 
90       Xa*lL)«l 

X<2.N2*l)»o,0 
N22«N2*2 
00  60   IL-N22.N 
XdflDvXdfN.lL^at 
X<2»IU"  -XI2,N.||,*2| 

TRANSFORM BACK 

CALL  COOL(N000l«X,*t(0) 

OLOSB-PACK FUTBRFD DATA   IN X 

00   70   Ill»NX 
70       Xf|)   >   X(l,l) 

RITURN 
BNU 



c 
c 
c 

SUBROUTINE FTaüüüOLIX.N.M.SIUNI) 
OIHENSION X(N,M) 
TTPE COMPLEX X 

2 DIMENSION ^UURIER THANSrOKH USING COOL 

NCO0L«LOttF|FLOM»,|NM/LOUF<2.0l*l,üb-ft 
NCOOL»LOÖF(FL0Ari||M))/LOQFI2.0Ul,0h-<> 
SCALfcN»X.0/SQRTF«|fLOATF(N»l 
SCALEM«l,0/SORTF»rLOATF<Mn 
00  1   IH«1,M 

CALL  CO0L(NC00L.X|i>iH)«SlUNn 
00  1   IN"1.N 

XUN*IH)"X(IN41NI«SCALEN 
CALL  MATHA63(X«N*H,X) 
00  2   IN»i,N 
lNOEX«l«(lN«l)*ri 
CALL  COOL<M0O0L*X« INDEX,1>#8IQNP 
CALL   SCAlfc-cSCALtM,M,X(INDEX,iH 
CONTINUE 
CALL HATKA63fX»H#NtX) 
RETURN 
iNU 



 . i_ E -^.-SSL^::  ...    

SUBROUTINE F190CU0|.<x,N«M*L,smNl) 
DIMENSION )((N4H«|.| 
TYPE COMPLEX X 

C 
C       3 DIMENSION FOURIER TRANSFORM USINQ COOL 
C 

LCO0LiLÜUF(FL0A7»-|LM/L0OF(2.0)*lt0E«6 
SCALbL«1.0/SORTFirLOATF<L>l 
DO 1 IL«1*L 
CALL FT2UC00L(XUtl,lL)*N,M,SIttNl) 

1 CONTINUE 
CALL MATHA63(Xi»N*M«L»X) 
DO 2 IN«1«N 
DO 2 IM«1*M 
lNDEXal«(lN«lI*ii«nM«l)*L*N 
CALL COOL(LCOOL«X|INDEX«1*1»«SlONl} 
CALL SCALEfSCALEL^fX« INDEX,1,1)) 

2 CONTINUE 
CALL MATRA69(XfL*N*M,X) 
RETURN 
END 



c 
c 
c 

10 

30 

40 

50 

UIMbNSIUN A(i?|l)'lM2*l) 

MATRIX TRANSFUSE ON CUHPL^K ARRAYS 

60 
100 

MASKl« 
MASK*!» 
NM«N*M 
ÜO 1U 
9(1. i ) 
Hl2,l) 
vr "0 
ASSIGN 
ÜO 1U0 
GO TU 
JMJM 

IMLL) 
JO»JF- 
ASSIGN 
TEMPbl 
TEMPH2 
J1«JÜ/ 
TEHPA1 
T6MPA2 
H(1,J1 
tH2,Jl 
lEMHdl 
rEMPB2 
JO«Jl- 
IHJl- 
ASSJflN 
CQNTIN 
HtlUHN 
tNU 

OOUQOOOOOUUOOOOIB 
77/777/77//77776B 

I»1#NM 
= Aa, I ».UH.MAbKl 
*A(2tp 

3U TO KSMH 
I«1,NM 

KSMH((3Q*!»U| 

1 
,J(- >.AND.MASKl 
30*30*40 

1 
5U TO KSWH 

■ Ud, JF) 
= d(2,jF ) 
N*XMOUFtJ(J»N)*M*l 
sU(l,Jl) 
= H(2, JU 
»■TEMPUX.ANQ<MASK2 
)»rEMPöa 
«fbMPAl 
=TfcMPA2 
1 
JF )60*6U*1U0 
JU TO KSNM 

UE 



SUBHÜUTINE SHfcUMÜH(lT,JT,KT#Xa»U.S) 
DIMENSION XU.1^S(2,1) 

it 

C DIMENSION Xl2,N,N,LF)#Xia.;?tLX*2>,8U#LFI 
c 
c 
C SPbCTHAL HATHIX FoR TARtO DAT* 
C 

C DATA MUST BE A pouER OF TWO |N LENGTH AND ON TARE IT IN SUB9CT 
C FOHMAI.  SRECTRAL HATRIX IS RETURNED AS A F63 COMPLEX MATRIX 
C IN X» 
C 
c II'INHUT subütef TAPE 
c JT-SCHATCH 
c KT-SCHATCH 

C X-WORKING AHRAV AND RETURNED SPECTRAL MATRIX 
C L-^tUMÖER OF TIME« TO SMOOTH 
C L>-RETURNED LENGTH OF i'ECTHAL ESTIMATES 
C S-HOHKINQ ARRAY 
C 
C PKOGHAM TOO CÜMPLICATED TU DESCRIBE«., 
C 

HEWINÜ IF 
Re^INO JF 
REMIND KT 
READ(IT)LOST#N#L* 
LX2>2*LX 
NCOOL«LOUF(FLOAT»,ILX))/LOGMi<.ü)*l,0b-ft 
NSO»N*N 
LF«LX/2*«L*1 
LX2PiJ«LX2*2 
LX4«4*LX 
LX2P2T2«2*LX2R2 
LXPl«LX*l 
LX2PJ«LX2*3 
IOC>ü 
LF2«2*LF 
WRITfc(jT)L0ST,N.LX2P2 
»«RITE(KT)L0ST«N*LX2P? 
00 10 IN>1(N 
CALL ERAbE(LX4»X) 
HEAD(irMxa«M)«Mm,Lx) 
CALL COÜL(NCÜOI.«lfX*«l«0> 
i*RITfe(JTMxlM),M»J,Lx2P2) 
KRITECKT)(X<M|,M"1,LX2P2) 

10 CONTINUE 
£ND ►ILE JT 
END FILE KT 
REWINü II 
REWIND JT 
REWINU Kl 
DO 1 INalfN 
INDBIN«! 

CALL SKIHRec«JN.^T» 
REAÜ(KT»UCM),MalaLX?P2) 
CALL D0TfcM(X#X.L*Pl»XCLX2P4)J 



- :  

CALL   SMüUTmxaX*p3>,LXPl#L> 
CALL   DISU63(lüC«lfKCl X?PJ)*LF2) 
IDC«IDC*V 
ÜO 6U JN*IN0«N 
HEA!;(KT)(X(H),M»Lr.2P3*LX^PüT^) 
CALL D0TbHIX*XtLX».93l*LXPl*xaX2P3)) 
CALL SH00THfX(LX^p3).LXPl«L) 
CALL 0ISC63(lOU»l«X(LX2P3)a^2> 
IDC^IDC^V 

60 ÜONTINUfc 
HtWIND Kr 
lSAVfc»KT 
KT«JT 
JT"ISAV& 

1 CONTINUE 
IOCBU 

DO   2d   INn,N 
IND>IN«1 
CALL   UISC63(I0C«U<S*LF2) 
IDC«IDC*V 
iNUfcX^IN+dN-lMN 
00 26 IL«1,LP 
X(l*INDltX)BS<t*lL) 
X(2,INDEX)aSt2#lL| 
INDEXSINUEX*NSU 

26 CONTINUE 
Ü0 it   JN*lNO«N 
CALL DISC6S(1DC«U,S*I F2) 
IDC»IUC*V 
INUEX1«1N*(JN»1)*N 
INDEX2SJN«(IN«1)*N 
UO 2B IL«1,LF 
X(l,INDfcXl)8S(l#iL» 
X(2,INDEXl)«Sf2f II.) 
XU«INDEX2)aS(i«lL) 
X(2*liiDEX2)«*S(<i*lL) 
INDEX1^INDEX1*NSU 
lNUEX2ti|N0EX2*NSU 

26 CONTINUE 
27 CONTINUE 
29 CONTINUE 

«flUHN 
bNU 

L 



c 
c 
c 

SUBHUUTINE SHOÜ|M|X,LENöTH#L, 

THI J HKHHIHU  HQUTINE THANKS Tu J CLAfcRBOUT 

ÜIMENSION KiitLkHQlHi 
LF"LfcNGTH 

ÜO 1 IL«1,L 
J<(l.l>«ü.5*x<l.l»*0.5*X(l*2l 
X(2,1)«0.0 

Jll*LF-.«ü.5*X«l.Lr)*0.5*Xa.l.F-l) 
X(2#LF)»0,0 
IN0-2 
ÜO 2 JL»J»LFH1«* 

l<2fIND)«X(2*JL} 
JNO«IND*l 
CONTINUE 

xa«|NOMXft«tM 
X(2,IND)«X(2«tF) 
l,F»LF/2*l 
LFM1-LF-1 
CONTINUE 
»ITUHN 
•MO 

SUBROUTINE OOTbMlX,Y,LW) 
UIMENSION X(2,L>.VJ2,L>,Z(2,L) 
UO 1 IL«1#L 

^VER«XC1.IL)«YC1,I|.)*XC2.IL>*Y<2,IL) 
jmuxcitaitvca.ai-xu.iuitya.iLi 
^U.lLMSAVEH 
'(»*IL)«BAVil 
HLTUHN 
bNU 



c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 
c 
c 

SUBROUTINE ülSCÖOfI8L0CK»ISMlfCH#X.NI 
DIMENSION xfN) 

THIS IS THE SOU DISC JRiVbR ROUTINE WRITTbN |N CODAP-1 
IT TRANSFERS WQRDS BETWEEN CORE AND THE DISC 
IBUOCK |S THE DISC BLOCK C32 WORDS) ADDRESS 
ISWITCH CONTHULS READING AND WRITING 

ISWITQH-U   GIVES A HEAD FROM THE DISC 
ISWITQHal GIVES A WRlTk UN THE DISC 

X IS THE COHfc ADDRESS 
N IS THE NUHHbR OF WORDS 10 THANSFEH 

THIS ROUTINE «UST BE SUPPUfcD BY THE USER OR INCLUDED IN BINARY 

RETURN 
END 

C 
C 
c 

SUBROUTINE ERASE(N*X) 
DIMENSION X(N) 

ERASE N WORDS IN X 

00 1 l«l.N 
1 X(I)*OtO 

RETURN 
END 

C 
C 
C 

SUBROUTINE SK[PHbC(N,ITAP6l 

SKIP N LOGICAL RECORDS ON TApfa ITAPE 

00 1 I*1*N 
1 READ<ITAPE)L0S1 
RETUHN 
END 



APPENDIX C - PROGRAM WRITE-UPS 

FINITE FOURIER TRANSFORM THEORY AND ITS APPLICATION TO THE 

COMPUTATION OF CONVOLUTIONS, CORRELATIONS, AND SPECTRA 



SEISMIC DATA LABORATORY 
ALEXANDRIA»VIRGINIA 

DIGITA:. COMPUTING SECTION 

A. IDENflFICATION 

Title;  Hyper-Rapid Specialized Cooley-Tukey Fourier Trans- 
form (direct only) 

COOP Identification;  G612-COOL 

Category;  Fourier Transform 

Programers;  J. F. Claerbout, D. W. McCowan, J. L. Gibson, 
and E. A. Flinn 

Pate;  26 February 1966 

B. PURPOSE 

To compute the Fourier series expansion of a real-or 

complex-valued data series, or the data series from the 

complex-valued Fourier series expansion. 

C. USAGE 

1.  Operational Procedure and Parameters; 

This is a CODAP subroutine with a FORTRAN-63 

calling sequence CALL COOL (N, X, SIGN) . X is a com- 

plex array used for the data series and the transform; 

N 
the number of elements of X is L = 2 ; SIGN = -1.0 for 

a direct Fourier transform, and +1.0 for an inverse 

Fourier transform (but see below for arrangement of 

data). 

For the direct transform:  on input the real part 
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of X contains the data series and the imaginary part of X 

i. zero, on return, the Fourier oosine series expansion 

U in the reai part of X, and the Fourier sine series 

expansion is in the imaginary part of X. Each contisns 

only 2   + 1  nonredundant points; the cosine expansion 

1. sysunetric ahout point nus*er 2t>-1  + 1 and the sine 

transform is antisymmetric about this point. 

For example: a = 3 and data = (0., 1., 0., 0., 0., 

0-, 0., 0.), Re(x). ,0., !., „., „., 0_t  „^ 0# 0');" 

I"(«)- (0., 0., 0., 0., 0., 0., 0., 0.) Onimput. On 

return, Re.X) - (1.000, .7071, 0., -.7071, -1.000, -.7071 
0-. -7071), Inm   .   ,(,., ._7071/ .li000( __7o7i( o^ 

•7071, 1.000, .7071). Point number 1 corresponds tosero 

frequency, point number 5 corresponds to s. 

For inverse transform:  the cosine and sine .eries 

must be folded over about point number j""1 + 1 before 

calling COOL with SIGN - +1.0. 

There is s scale factor of 2-" which COOL does not 

apply. The user can choose to apply the scale factor 

either to the direct or to the inverse transform, or to 

apply a fact« of 2^  to both. For example, if COOL 

were called with the transform example above, the result 

would be Re(X). ,0., 8., 0., 0., 0., 0., 0.) and 

I-(X) - (0., 0., 0., 0., 0., 0., 0., 0.). 
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I 
2. Space Required;  Approximately 200  exclusive jf X. 

The largest series that can be transformed in a 32K 

core machine is 8K. 

3. Temporary Storage Requireo;  None.  Other versions of 

this program have an auxiliary storage for the cosine 

table and/or a table of bit-reversed numbers. COOL 

computes its sines and cosines as it goes, and uses an 

algorithm due to J. F. Claerbout for calculating the 

bit-reversed numbers. 

4. Printout; None. 

5. Error Printouts;  None, 

6. Error Stops;  None. 

7. Input and Output Tape Mountings;  Not Applicable 

8. Input and Output Formats; Not Applicable. 

9. Selective Jumps and Stops;  None. 

N 
10. Timing;  Time is proportional to N*2 . Tranuforming 

8192 on the CDC 16'<4'B requires 25.0 seconds. 

11. Accuracy; Calling COOL returns the original to about 

nine decimal places. 

12. Cautions to User;  See Operational Procedure above. 

13. Configuration;  Standard COOP. 

14. References:  J. W. Cooley, 1964 "Harm - Harmonic Analy- 

sis; Calculation of Complex Fourier Series";  IBM Watson 

Research Center Yorktown Height, New York. 
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J, W. Cocley and J. W. Tukey, 1965, An Algorithm for 

the Machine Calculation of Complex Fourier Series: 

Math, of Comp., Vol. 19, pp. 297-301. 

Writeups of the following SDL programs: 

COOLTWO:   Does two Fourier transforms at once. 

FT3DC00L:  Three-dimensional Fourier transform 

D.     METHOD 

N Given a time series X(I), 1, L (Where L = 2 ) assumed 

to be periodic outside the given range, COOL constructs 

N-l 
iTK 

Y(K) = SUM X(J)*W K = 0,  L - 1 

J=0 

where W =». exp (-2TTi/L) for time-frequency transform, and 

W = exp (+2rri/L) for frequency-time transform.  The algo- 

rithm is efficient, requiring N*2 multiplications rather 

than 22N. 
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SEISMIC  DATA LABORATORY 
ALEXANDRIA,   VIRGINIA 

DIGITAL COMPUTING  SECTION 

A. IDENTIFICATION 

Title;  Multichannel convolution in the frequency domain, 
for taped data» 

COOP Identifications  UES G620 COOLCON 

Category;  G6 Time Series Analysis 

Programer;  D. W» McCowan 

Date:  22 September 1966 

B. PURPOSE 

This subroutine convolves data channels on the input 

subset tape with a multichannel filter stored in core, 

working entirely in the frequency domaino  The result is 

written in subset format on another tape. 

C. USAGE 

1. Operational Procedures  This is a FORTRAN-63 subroutine 

with calling sequence; 

CALL COOLCON (INT, IOT, L, F, X). 

2. Parameters; 

INT is the number of the input tape unit.. 

IOT is the number of the output tape unit* 

L is the number of points in the filter (see restriction 

below) . 
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F is the multichannel filter, dimensioned F(N,L) in the 

calling program, where N is the number of channels on the 

input subset tape. 

X is a working array, dimensioned X(2,IT) is the calling 

program, where IT is the l(east power of 2 such that 

IT 2   > L + LX 

where LX is the number of data points in the input 

channels. 

Restriction on length of data and length of filter: 

1.3 LX + L must not be greater than 2   (8K). 

3. Space Required;  Very little in addition to arrays. 

IT 4. Temporary Storage Required;  2*2  working space, plus 

127  for the subset tape label. 

5. Printout;  None. 

13 6. Error Printouts;     If L+LX>2     ,   these numbers are printed 

with an error message. 

13 7. Error Stops;  If L+LX>2  , the subroutine stops the 

calling program. 

8. Input and Output Tape Mountings;  See Parameters above, 

9. Input and Output Formats;  Compatible with UES Subset 

(See Writeup). 

10. Selective Jump and Stop Settings;  None. 

11. Timing;  Dominated by two Fourier transforms using COOL 
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13, 

14. 

15. 

for each channel to be filtered.  The length of trans- 
IT 

form is 2   (See Writeup oE COOL). 

Accuracy:  This yields the same numbers, to ten decimal 

places, Which would be computed by convolving the 

filter and data series in the usual way. 

Cautions to User;  None. 

Contiauratinn-  Standard COOP. 

References;  Writeups of UES G612 COOL, UES Z24 SUBSET, 

and UES G617 COOLER, 

D.    METHOD 

Pox each channel to be filtered, the subroutine erased 

2    locations of X, and multiplexes the filter and the 

data channel in X, starting at the beginning.  Note that as 

far aG COOL is concerned, X is a complex array with data in 

the real part and filter in the imaginary part. COOL is 

called, and the logic of COOLER (q.v.) is used to form the 

Fourier transform of the filtered channel in X. COOL is 

called again to get back to the time domain, and the filter- 

ed channel is written on the output tape. 

The subset label is copied from the input tape to the 

output tape at the beginning of the subroutine. 
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B. 

C. 

SEISMIC  DATA LABORATORY 
ALEXANDRIA,   VIRGINIA 

DIGITAL COMPUTING  SECTION 

IDENTIFICATION 

Title: Hyper-Rapid Specialized Cooley-Tukey Fourier Trans- 
form   (direct only) 

COOP  Identification;     G617-COOLER 

Category;     Fourier Transform 

Progratner;     J.  F.  Claerbout 

Date:     27 July 1966 

PURPOSE 

To compute the Fourier series expansion of a real-valued 

time aeries. 

USAGE 

Operational Procedure: This is a FORTRAN-63 subroutine, 

with calling sequence CALL COOLER(N,X). This subroutine 

calls COOL. 

Parameters:  On input, X is a real-valued time series 

containing LX points, where LX = 2N, N is restricted 

to be 14 or less. On return, X contains ^LX+l complex 

points of the Fourier transform of the data, with the 

real and imaginary parts multiplexed together - i. e., 

on return X can be thought of as a complex array, with 

the cosine transform in the real part and the sine 
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transform in the imaginary part. 

X must be dimensioned at least LX+2 in the 

calling program.  (i.e.f ^LX+l complex points) 

3. Space Required; Very little. 

4. Temporary Storage Required; None. 

5. Printout;  None. 

6. Error Printouts;  None. 

7. Error Stops;  None. 

8. Input and Output Tape Mountings;  Not Applicable. 

9. Input and Output Formats; None. 

10. Selective Jumps and Stops; None. 

N 
11. Timing; Time is proportional to N.2 ; transforming 

16384 points on the CDC 1604-B requires 45.0 seconds. 

12. Accuracy; About nine decimal places. 

13. Cautions to User;  On return, the real and imaginary 

parts of the transform are multiplexed together. X 

must be dimensioned at least LX+2 in the calling pro- 

gram, not LX. This subroutine will not do an inverse 

transform. 

14. References;  Writeup of UES G612 COOL. 
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SEISMIC DATA LABORATORY 
ALEXANDRIA, VIRGINIA 

DIGITAL COMPUTING SECTION 

A.     IDENTIFICATION 

Title:  Hilbert transform of periodic data 

COOP Identification;  UES G619 COOLHLBR 

Category;  G6 Time Series Analysis 

Programer;  E. A. Flinn and J. F. Claerbout 

Date;  23 September 1966 

B. PURPOSE 

To compute the Hilbert transform (quadrature function) 

of a time series.  Since COOL is used, the time series is 

assumed to be periodic outside the range of definition. 

C. USUAGE 

1'  Operational Proceduref  This is a FORTRAN-63 subroutine, 

with calling sequence:  CALL ^OOLHLBR(N,X),  This subroutine 

calls COOL. 

2.  Parameters;  N is the log (base 2) of the number of 

data points, x is the data, dimensioned at least 2N in the 

calling program, and type complex there. 

On input, the real data series must be stored in the 

real part of X, and the imaginary part must be zero. 

On return, the real data series is stored in the real 

part of scaled up by 2N"1.  The Hilbert transform is stored in 

the imaginary part of X, also scaled up by 2N"1. 

  - C-10 - 



3=  Space Required;  Very little in addition to the array 

N+l for data, which requires 2   locations in the calling 

program. 

4. Temporary Storage Required;  None 

5. Printout;  None 

6. Error Printouts;  None 

7. Error Stops;  None 

8. Input and Output Tape Mountings^  Not Applicable 

9. Input and Output Formatss Not Applicable 

10. Selective Jumps and Stops;  None 

11. Timing:  Dominated by two calls to COOL 

12. Accuracy;  The data is returned correct to ten decimal 

places. 

13. Cautions to User;  The data must b^ arranged as under 

(2) above, 

Notice that as far as this subroutine is concerned 

the data is periodic outside the range of definition»  End 

effects rifay cause answers which the user does not expect 

For example, if the input is a pure sine wave, the user 

expects the quadrature to be a pure cosine.  Using this 

subroutine, this turns out to be the case only if the data 

series contains an integral number of cycles. 

14r  References;  Writeup of UES G612 COOL. 
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D.   MBTHOD 

The Hilbert transform of a function has a Fourier trans- 

form Which is (-1)3* times the Fourier -transform of the function. 

COOL returns the real and imaginary parts of the Fourier transform 

of a function calculated from zero to 2n/ so that the real part 

is symmetric about the middle and the imaginary part is anti- 

symmetric. 

If the Fourier transform of the function is A+iB, the Fourier 

transform of the Hilbert transform is -B+iA.  All COOLHLBR does 

is erase the second half of the Fourier transform (the part 

from TT to 2n), half-weight the end points, and call COOL again 

to transform back to the time domain. 

The scale factor 2N-1 comes from the fact that COOL gives 

the unnormalized transform. 
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SEISMIC  DATA LABORATORY 
ALEXANDRIA,   VIRGINIA 

DIGITAL COMPUTING   SECTION 

A. IDENTIFICATION 

Title:  Fourier Transform of Two Data Series Simultaneously 

COOP Identification;  COOLTWO 

Category;  G6 Time Series Analysis 

Programer;  E. A. Flinn 

Date:  10 June 1966 

B. PURPOSE 

To compute the Fourier series expansion, using COOL 

(q.v.), of two data series simultaneously. 

C. USAGE 

1- Operational Procedure;  This is a FORTRAN-63 subroutine 

with calling sequence. 

CALL COOLTWO (N, X, SIGN, A, B) . 

2.  Parameters; 

N is the log (base 2) of the number of elements in X; 

X contains the two data series, multiplexed in one complex 

array, so that Re(X) contains one series and Im(X) contains 

the other. 

SIGN = -1.0 . The program has not yet been checked 

out for inverse transformation; 

A is the complex (cosine and sine) transform of the data 

series stored in the real part of X; 
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B is the complex Fourier transform of ^he data series stored 

in the imaginary part of X; 

A and B are both of length 2**(N - 1) + 1. 

3. Space Requireds  about 70  excluding arrays. 

4. Temporary Storage Requirementss  None 

5. Printoutss  None 

6. Error Printouts;  None 

7. Error Stops;  None 

8. Input and Output Tape Mountings;  None 

9. Input and Output Formats^ Not Applicable 

10. Selective Jump and Stop Settingss  Not Applicable 

N 
11. Timings  Timing is proportional to N^ ; transforming 

8192 data points on the CDC 1604-B requires 25.0 seconds» 

12. Accuracy;  Same as COOL„ 

13. Cautions to User^  This program has not been checked out 

for inverse transformation<. This program does not 

-N 
apply the scale factor ?  , since some users may wish 

to apply the scale factor to the inverse, rather than 

the direct transform.  The number of data points must 

be a power of 2. 

14. Configurations     Standard COOP 

15. References;     Writeup of UES G612 COOL 

D,  METHOD 

The method  is  due to Jo  W. Cooley   (see Reference 2  in 

main body of this  report.) 
- C-14 - 
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SEISMIC DATA LABORATORY 
ALEXANDRIA, VIRGINIA 

DIGITAL COMPUTING SECTION 

A. IDENTIFICATION 

Title:  Fast convolution of two time series using COOL": 

COOP Identification;  UES COOLVOLV 

Category;  Time Series Analysis 

Proqramers  E. A. Flinn and D» W,. McCowan 

Date;  2 3 September 1966 

B. PURPOSE 

To form the convolution of two time series, not by the 

usual polynomial multiplication algorithm, but by forming the 

two Fourier transforms (using COOL), multiplying them together, 

and transforming back to the time domain.  This is faster than 

the usual procedure when 

LX-LF » 4 (2N + 1)  (LX + LF) 

where LX is the data series length, LF is the filter impulse 

response length, and N is the log (base 2) of LX + LF„ 

C   USUAGE 

1. Operational. Procedures  This is a FORTUA!;J-63 subroutine, 

with calling sequences 

CALL C OOLVOLV(LX,X,LF,F) 

2. Parameters; 

X is the data series to be convolved, dimensioned at least 
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J+l ^ 
2   in the calling program, Where 2U   is the smallest 

power of two larger than LX + LF. 

LX is the length of the data series to be convolved» 

F is the filter to be convolved with X, 

LF is the length of the filter. 

j 3.  Space Required;  300in Plus arrays. 

4. Temporary Locations Required;  None beyond filling out X 

to the first power of two greater the LX + LF <. 

5. Alarms or Special Printout;  None 

13 
6. Error Returns;  If LX + LF > 2  , LF is replaced by -LF 

and control is returned to the calling program. 

7. Error Stops;  None 

8. Tape Mountings;  None 

9. Formats;  None   0 

10. Jump and Stop Settingss  None 

11. Timings  Dominated by two calls to COOL for LX + LF 

points each time. 

12. Accuracy;  Gives the same results as polynomial multi- 

plication to ten decimal places, 

13. Cautions;  None 

14. Configuration;  Standard COCP 

15. References;  Writeups of COOL, COOLCON, AND COOLER 

Do   METHOD 

The same method is used as used in COOLCON. 
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SEISMIC DATA LABORATORY 
ALEXANDRIA,VIRGINIA 

DIGITAL COMPUTING SECTION 

A. IDENTIFICATION 

Title;  Two and Three Dimensional Fourier Transform Package 

COOP Identifications  G615 FT2DCOOL, FT3DC00L 

Cateqorys  G6 Time Series Analysis 

Proqramer;  D. W. McCowan 

Date;  20 April 1966 

B. PÜBFCSE 

The subroutines in this package compute two and three 

dimensional Fourier transforms»  Their names ares  FT2DC00L, 

FT3DC00L, COOL, MATRA63, and SCALE.  As with COOL, the 

dimensions on the data must be a power of two, 

C. USAGE 

1. Calling Sequences 

CALL FT2DCOOL   (X,N,M,   SIGNl) 

and 

CALL FT3DC00L   {Xtn,U,L,   SIGNl) 

2, Arguments; 

X, the complex array in which the data is supplied and 

in which the Fourier transform is returned.  If real 

data is supplied, it must be put into the real part of 

X and the imaginary part must be erased. 
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N,M,L, the dimensions of Xo  Each of these numbers must be 

a power of two.  The number of complex points in the Fourier 

transforrr will be N/2 + 1, M/2 + 1,   and L/2 +1 in each direct-1 

ion, 

SIGNI, a switch determining the type of transform to be per- 

formed, SIGNI = -1,0 gives a direct transform (time to fre- 

quency), and SIGNI = +1,0 gives the inverse, 

3. ■ Space Required;  500 locations, 

4, Temporary Storages  None 

5• Alarms and Printoutss  None 

6•  Error Returnss  None 

7, Error Stops;  None 

8, Tape Mountings;  None 

9, Formats;  None 

10.  Jumps arid Stop Settings;!  None 

11«  Time Required;  Three-dimensional Fourier transforms require 

NM + NL + ML one-dimensional Fourier transforms,  Two-dimen- 
r, 
sional Fourier transforms require N + M one-dimensional 

Fourier transforms.  For the timing of one-dimensional Fourier 

transforms, see References, 

12, Accuracy;  Same as COOL 

13. Cautions to Users;  None 

14, Equipment Configurations  Standard COOP 

15. References;  Writeup of ÜES G612 COOL 3/30/66 
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METHOD 

The direct 2 and 3~dimensional Fourier transforms are 

defined ass 

N-l  M-1 

MvV^przLr:       I        I     x(krk2) w^A    w2-32k2 
kl=0       k2=0 

and 

A^1^2'^3^   = 

V NML 

N-l M-1 L-l 

L 
ki=0 k2=o k3=o 

WrJlkl W2 '^^ W3.-j3k3 

Where W = exp(2rri/N);  W = exp(2ni/N);  W - exp(2ni/L) 

The two-dimensional transform is broken up Into N + M 

one-dimensional transforms and the three-dimensional transform 

is broken up into L two-dimensional transforms and NM one-dimen- 

sional transforms. 

& 
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SEISMIC DATA LABORATORY 
ALEXANDRIA VIRGINIA 

DIGITAL COMPUTING SECTION 

A»   IDENTIFICATION 

Titles  Spectral Matrix Estimates 

COOP Identifications  G618 SPECTRUM 

Category,;  Time Series Analysis 

Programer;  D. W» McCowan 
"" "^ & 

Date;     10 July  1966 

Bo       .PURPOSE 

This is a package of three FORTRAN-63 subroutines for 

computing an estimate of the spectral matrix for N channels 

of data stored on magnetic tape.  It uses the hyper-rapid 

Fourier transform routine COOL, and makes use of two tapes 

and the disc to cut running time to a minimum.  The names 

of the three routines in the package ares  SPECTRUM, DOTEM, 

and SMOOTH.  In addition to these, three more subroutines 

are assumed to be on the system tape;  they ares  COOL, 

SKIPREC, and ERASE.  Since all other routines are called 

internally by SPECTRUM, only the calling sequence for it 

will be given. 

Co   USAGE 

1o Calling Sequences 

Call SPECTRUM. (IT, JT, KT, S, NS, LF, X) 
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2 .  Argumentss 

IT,  the input subset tape number on which the N channels 

of data are written.  The length of each channel must 

be exactly a power of two» 

JT,  the number of a scratch tape,, 

KT,  the number of a scratch tape, 

S,   a triply subscripted FORTRAN-63 complex array used both 

for internal manipulation and to return the computed 

spectral matrix as a N by N by LF complex array with 

subscripts varying in that order.  Here N is the number 

of channels read from the input tape label and LF is the 

smoothed length of each spectral estimate. This array 

must also be 4*LX+4 locations in length, since it is 

also used for internal computations. LX is the length 

of the input data channels read from the input tape 

label.  Remembering that there are two locations used 

for each complex number, the total dimensions on S in 

the main program must be 2*N*N*LP or 4*LX+4, whichever 

is the larger.  It is usually convenient to dimension it 

as complex N by N by L F63 array in order to facilitate 

use. L here is a number chosen so that S will be large 

enough as described above. 

NS,  the number of times to apply the hanning smoothing 

operation to the original estimates. 

jimiWHM 
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LF,  the returned length of the spectral estimates.  This is 

computed from the formula: 

LF - (LX/(2**NS) + 1 

LF must not be larger than 129. 

X,  an array used for internal manipulation, containing at 

least 2*LF locations. 

3. Space Required;  502 locations 

4. Temporary Locations;  None 

5. Alarms or Special Printout; None 

6. Error Returns; None 

7. Error Stops;  The subroutines stop if length of data series 

13 
exceeds 2  . 

8. Tape Mountings;  See Arguments 

9. Input and Output Formats;  See Argmr.ents 

10. Jump Settings; None 

11«  Time Recruired; A 10-channel, 4096-point,  NS = 6 case 

takes approximately 10 minutes of 1604 time. 

12. Accuracy;  Single precision 

13. Caution to Users; The subroutine as written requires 

that the data series should contain a number of points 

exactly a power of two. 

14. Equipment Configuration;  Standard COOP 

15. References;  Writeup of subroutine ' ■■ G612COOL, 6/1/66 
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Stockham, T.  Go, 1966 High Speed Convolution and Cor- 

relation, AFIPS Proceedings 

D.   METHOD 

The spectral matrix elements S..(k) are usually defined 

as Fourier transforms of correlation functions R. .(tK  How- 
i j 

ever, it must be realized that these correlations are transient 

correlations where the functions are considered to be zero 

outside the region of interest and 100% lags are taken. They 

are defined as follows? 

T-l~t 

I,  . (t) = Y  x. (T) x. (T + t) 
13     L        i    ] 

T=0 

T-l 
( -11  T1 

R. .    ■= )  X. (TJ X. (T - 
13     L      x i 

t)  = R. . 
31 

(t) 

T=t 

The  spectral matrix element  is then 

T-l    T-l 
Zr1 tk 

)     x. (T)  X.(T - t)  W ~™ 
^_i       i 3 * 

t-=0      T=t 

X. (T)   X . (T+t)    W 
i 3 

This can be  shown to be equivalent  to: 

S..(k)   = F     (k)  F.   (k) 
13 i 3 

T-l T-l-t 

L 
t=l      T=0 
I 

■■tk 
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where T-l 

. (k)   =    Y    x. (t)   W" 

t=o 

tk 
F. (k)   =    )     xatj   w -j" 

This is recognized as the Fourier transform of the input 

data computed over twice its length with zeros filled into 

the second half. The Cooley-Tukey hyper-rapid Fourier 

transform routine COOL is used to provide the high speed 

necessary here. 

Each spectral matrix element is originally T + 1 

complex points long between DC and the folding frequency. 

It is then smoothed with a hanning window NS times to its 

final length of LF points. 
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